Max. Marks: 100 NHOF . Reg. No. : Name : # Sixth Semester B.Tech. Degree Examination, May 2016 (2013 Scheme) 13.602: VLSI DESIGN (T) Time: 3 Hours ## No. 11 and #### PART - A Answer all, each carries 2 marks : - 1. Compare electron beam and photo lithography. - 2. Define Fick's diffusion laws. - Define threshold voltage. How it can be controlled? - 4. What are the properties of the metal used for metallization? - 5. What are the undesirable capacitances formed in MOS fabrication? - 6. Define the noise margin for CMOS inverter. - 7. Define equations for static and dynamic power dissipation. - 8. Why the pseudo NMOS is ratioed? - 9. Draw the basic FPGA structure. - 10. Draw a DRAM memory cell. 2×10=20 Marks) #### PART-B Answer any one question from each Module: ### Module - 1 11. a) With diagram explain the CZ process of crystal growth. 9 10 b) Assuming Gaussian distribution for the ion implantation, find the distance from the surface at which the ion concentration falls to half the peak value, for a range of 0.1 μ . The straggle value is 0.02 μ . 6 c) What is the shift in threshold voltage for $\phi_b=0.375$ and $\gamma=0.57$. Let $V_{SB}=2.5V$. 4 | A- | - 27 | 49 | | |-----|------|--|------| | 12. | a) | With neat sketch, explain the CVD process. | 10 | | | b) | Explain different diffusion profiles with relevant equations. | 10 | | | | Module - 2 | | | 13. | a) | Explain the twin-tub process flow for CMOS fabrication. | 10 | | | | Derive the I _D – V _{DS} relationship in a MOSFET. | 10 | | 100 | | ShaM xaM OR | , W. | | 14. | a) | Explain the short channel effects in MOSFET. | 10 | | | b) | Derive the expression for MOSFET threshold voltage. | 10 | | | | Module – 3 | | | 15. | a) | Derive expression for switching threshold of a CMOS inverter. | 10 | | | b) | Design a pass transistor logic for 2 input XNOR gate. | 4 | | | c) | What are the advantages and disadvantages of domino logic? | 6 | | | | C notice and a bonnet assumption of the underly and the control of the underly and | | | 16. | a) | Derive graphically, the CMOS inverter characteristics. | 10 | | | b) | Show the design of a 32 bit carry select adder based on 4 bit or similar ripple carry adder. Find the total gate delay for your design. | 10 | | | | Module – 4 | | | 17. | a) | Design and AND-OR PLA, with outputs, | | | | | $F1 = m_1 + m_6$ | | | | | $F2 = m_0 + m_5 + m_6 + m_7$ | | | | | F3 = $m_3 + m_4 + m_7$. | 10 | | | b) | What is the purpose of sense amplifier? Explain any one type. | 10 | | | | With dayram explain the CZ process of crystal growth. Assuming Gaussian distribution for the ion implantage, find the distant | | | 18. | | Draw a ROM array to store a set of Eight, 8-bit data using MOS based ROM. | | | | | Explain how they are written and read? | 10 | | | b) | Explain the system level VLSI test techniques. | 10 | | | | | |